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Invariance Conditions for Linear Automatic Control
Systems with Perturbations Assigned Statistically
A. G. IVAKHNENKO G- T
Avtomatika, vol. 2, No. 3, 1957, pp. 32-36 35BS &—
An increase in the accuracy and high-speed of automatic regulation systems
is a problem of practical importance. In recent years, a combination regulation
principle, according to which & terms corresponding to influences on the fund-
amental perturbations (i.e., from loading the object being regulated or from the
program) are in the regulation law, has been used all the more widely for this
purpose. The idea of selecting the regulation system circuit and parameters
taking into account the continuous variation of the perturbations was first
expressed in 1940 by Acad. V. S. Kulebakin. Conditions are given in his works
[},2,3] for the total elimination of the errors of linear systems when the per-
turbation is an arbitrary function of time (invariance for an arbitrary load)
or a given function of time (invariance for a given load).
Let us assume that the automatic regulation system is described by a linear

differential equation with constant coefficients

(1) 25(p)? = - by(p) M(¥) + b;(p) AT1(t)
where = ? 1is the deviation of the regulated guantity or the error for the servo-

systems A(t) are the basic perturbations (loading for a stabilizing system or

’ It
degree n and m , respectively; bé(p) is a polynomial in p = %5 g ATE(t)

task for a following system); a3(p), b3(p) are polynomials in p = L o
are the additional external perturbations which are introduced artificially into
the system from a forcing device.
The invariance conditions can then be written thus [L]s
In the absence of a forcing device
At) =0 3 b3(p) =0 ; b;(p) #0 and A(t) #0 but b3(p) At) =0
In the presence of a forcing device

= by(p) A(t) + b3(p)ATI(t) = O

Many automatic control systems experience the influence of perturbations
which vary continuously and can only be given statistically. In connection with
the development of statistical methods of investigating regulation systems [5,6],
the question arises of the relation of these methods to the theory of combination
regulation systems, in particular, of the expediency of adjusting systems in
conformance with the invariance conditions. Are the invariance conditions



effective for perturbations given statistically’

Let us analyze the most typical examples of synthesizing composite systems
by using different forms of the invariance conditions.

EXAMPLE 1. Synthesis of a Composite System by Using the Second Form of
the Invariance Conditions. ILet us assume that the automatic regulation system
is described by a linear differential equation with constant coefficients
(2) zaLB(p)‘p = - b3(p)X(t)

The perturbation A(t) is given statistically. It is a stochastic function of
time with variance D)\ and spectral density Sx(m) . let us agree that the
function A(t) consists of analytic functions of time. An initial condition
is also given: The system error is 9(t) = 0 at t = 0 . It is required to
find the coefficients of the polynomial b3(p) so that the system error will
be a minimum,

The error spectral density is

(3) Selw) = —1;3-(5;- S-}\(w)
where p = 4 3 and the variance
dt
+00
(4) Dp = / Sylw) do
=00
Therefore, the mean-square error of the system is
( +00 [= ba(p)]?
5) Eq) = 4--V-ﬁ‘-p = 4 =c‘”[ _—(—')"'83 D s)\(m) dw

As long as we select b3(p) in accordance with the second form of the invar-
iance conditions b3(p) =0, we obtain D, =0 and &, =0 . This means that
® can only be a constant. Using the initial condition ®(t) =0 at t =0,
we easily find that the fixed system error becomes zero, ¢ = 0 , under com
pliance with the invariance conditions. Hence, the invariance condition for
arbitrary loading, b3(p) = 0 , is retained even for perturbations A(t) given
statistically.

Taking into account that real systems are described by linear ordinary
differential equations in a first approximation and also by a number of other
limitations [L], the invariance conditions in all forms should be considered
first as a directing means of decreasing (minimizing) error in every way.

EXAMPLE 2. Synthesis of Composite Systems Using the Fourth Form of the



Invariance Conditions. In practice, the invariance conditions in the second

form, b3(p) = 0 , can be satisfied by using an appropriate choice of the coupling
coefficients in terms of the basic perturbations and its derivative [i]. However,
as a rule, the system must here have differentiators which give a first and second
derivative in the perturbation. This causes no difficulty in electronic systems
[?] but the second derivative cannot be obtained accurately enough in the absence
of electronic amplifiers if considerable power is required at the differentiator
output.

In this case, it is easy to reduce the system error by using a well-known
forcing device [li] which additionally affects the system imput bé'(p)l"(t) .

Let us consider the question of how to select the operator of the forcing
device bg“(p) if the function is AVf(t) .

Let us assume that the automatic regulation system is described by the
linear differential equation (1) . The basic perturbing effect A(t) is given
statistically. Let us assume that it is the sum

AMt) =0 (8) + lz(t)
where xl(t) is the usual, nonrandom function of time defined as the most prob-
able mean value of the perturbing effect; its spectral density is Skl(w) H

kz(t) is a random function of time with variance D

Ao
S. (w) .
Ay

and spectral density

Also given is the initial condition: The system error is ?(t) =0 at
t €0,

It is required to select the law of the variation of the effect of the
forcing device A'*(t) or its operator bé'(p) so that the system error would
be a minimum.

The basic perturbing effect A(t) and the effect of the forcing device
A?9(t) are mutually independent. The correlation function is zero.

The error spectral density, under the effect of complex perturbations
consisting of a random and a given function of time, is

§ - b3(p) 2 b;(p) 2
(6) Syl = |7 NG + 8y (@)] + 27| S

and the variance is

+
(7) Dy = J Sylw) do
«00



The mean-square error is

o, (0)]2 by (p)]?
(8) E(p = D‘p = 4 m‘({o ——3('57 S.}‘l((o) + S 2(0))] -—3—(—)— [SK',(O))]d(D

It will equal zero if the following invariance condition is satisfied:

- b4(p)
(9) - 8y, 4(w) = p] [_S)‘l(m) + S (m)]

The error ® is a constant for e¢ =0 .

Using the initial condition (¢ =0 at t = 0), we establish that the
system error will be zero, ¢ = 0 , if condition (9) is satisfied. Hence, we
have obtained the desired invariance condition (9) which indicates a method of
eliminating or, at least, of decreasing the error.

Iet us turn attention to the fact that the polynomial aB(p) in the left
side does not take part in condition (9), therefore, the possibility of elimin-
ating or decreasing the error by using a forcing device is not dependent on the

change in the system properties (its stability, say). It is possible to point
out cases of different regulating systems in which it is possible to use the
condition (9) to increase their accuracy. Let us visualize a system which
includes a strip in which the influences are transmitted in the form of frequency
combinations. Let it be assumed that an obstacle with spectral density Sx(m)

is given in the whole strip. In order to eliminate the error that the obstacle
causes, a forcing device (noise generator) with the spectral density Sx(m) ,
which compensates the effect of the obstacle, can be used.

However, systems in which the effects of the forcing device Are(t) are
realized as a statistical, random function of time are very few. Most often,
the effects. of the forcing device AM%(t) can be realized in the systems as the
usual, nonrandom function of time. Consequently, the further transformation
of the condition (9) (in contrast to case 1 where complete error elimination is
achieved at first glance) affords the possibility of determining the system
adjustment which corresponds just to a change in the error, or more exactly,
to elimination of the average component of the error which is ¢ .

The error component which arises under the influence of random perturb-
ations Xz(t) is retained. Only the component which arises under the action
of Xl(t) is eliminated.

The spectral density is related to the square of the mathematical



expectation by using the Fourier transformation. Hence,

(10) o )
10 = +
}[X‘” 3 P Mll MA2
The mathematical expectation of a nonrandom function of time equals
(11) M, = AO(5)
(12) = ), (t)
Moo=
and the mathematical expectation of a stationary random function is zero
(13) =0
"

Thus, we finally obtain

b, (p)
(1) AE(E) = %E]H(t)
Condition (1h) permits the forcing apparatus A?%(t) and the operator b''(t)
to be selected so that the error component which arises because of )1(1;)
would be eliminated completely.

Under the conditions of the problem being considered, the error will be
decreased sharply by the magnitude of the average component. The average com-
ponent of the effect 7\1(1'.) does not cause any error to appear.

We obtained the invariance condition for perturbations uswally given as
nonrandom functions of time, earlier [h] s in the so-called fourth form

by(p)
(15) AI(t) = W a(t)

When the perturbations are given thus

A(t) = M
then the result (15), which we obtained earlier, corresponds completely to
condition (1h).

Hence, we have shown that the invariance conditions for linear systems
are real for amy given, including statistically, perturbations. The form of
the invariance conditions is almost unchanged.

Inst, of Electrical Engineering, Ukr. SSR March 10, 1957
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